Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Nat Neurosci ; 22(2): 180-190, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643298

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Femenino , Humanos , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Poliadenilación , Médula Espinal/metabolismo , Médula Espinal/patología , Estatmina
2.
Mol Ther ; 26(5): 1228-1240, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29650467

RESUMEN

CRISPR-based gene editing is a powerful technology for engineering mammalian genomes. It holds the potential as a therapeutic, although much-needed in vivo delivery systems have yet to be established. Here, using the Cpf1-crRNA (CRISPR RNA) crystal structure as a guide, we synthesized a series of systematically truncated and chemically modified crRNAs, and identify positions that are amenable to modification while retaining gene-editing activity. Modified crRNAs were designed with the same modifications that provide protection against nucleases and enable wide distribution in vivo. We show crRNAs with chemically modified terminal nucleotides are exonuclease resistant while retaining gene-editing activity. Chemically modified or DNA-substituted nucleotides at select positions and up to 70% of the crRNA DNA specificity region are also well tolerated. In addition, gene-editing activity is maintained with phosphorothioate backbone substitutions in the crRNA DNA specificity region. Finally, we demonstrate that 42-mer synthetic crRNAs from the similar CRISPR-Cas9 system are taken up by cells, an attractive property for in vivo delivery. Our study is the first to show that chemically modified crRNAs of the CRISPR-Cpf1 system can functionally replace and mediate comparable gene editing to the natural crRNA, which holds the potential for enhancing both viral- and non-viral-mediated in vivo gene editing.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Edición Génica , ARN Guía de Kinetoplastida , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Marcación de Gen , Variación Genética , Humanos , Mamíferos , Conformación Molecular , Unión Proteica
3.
Cell Rep ; 17(9): 2394-2404, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880912

RESUMEN

Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Cinetocoros/metabolismo , Mitosis , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Epigénesis Genética , Humanos , Modelos Biológicos
4.
Proc Natl Acad Sci U S A ; 110(6): E448-57, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341616

RESUMEN

HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN Viral/metabolismo , VIH-1/fisiología , Integración Viral/fisiología , Fármacos Anti-VIH/farmacología , Secuencia de Bases , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/genética , ADN Viral/química , ADN Viral/genética , Nucleótidos de Desoxiuracil/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , VIH-1/genética , VIH-1/patogenicidad , Células HT29 , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunidad Innata , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Modelos Biológicos , Mutación , Quinazolinas/farmacología , Transcripción Reversa , Tiofenos/farmacología , Timidina/metabolismo , Timidina/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Virión
5.
AIDS Res Hum Retroviruses ; 27(7): 759-61, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21105850

RESUMEN

The cells responsible for the second phase decay of HIV-1 viremia following the initiation of antiretroviral therapy have yet to be identified. A dynamic model that considers where drugs act in the virus life cycle places constraints on candidate cell types. In this regard, the rapid drop in viremia in patients starting regimens containing the integrase inhibitor raltegravir is of particular interest. We show here that the time delay between reverse transcription and integration is short in differentiated macrophages, making these cells poor candidates for the second phase compartment under the assumptions of standard models of viral dynamics.


Asunto(s)
Fármacos Anti-VIH/farmacología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , Macrófagos/virología , Latencia del Virus/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Humanos
6.
J Biol Chem ; 285(52): 40956-64, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20929867

RESUMEN

Nucleic acid cytidine deaminases of the activation-induced deaminase (AID)/APOBEC family are critical players in active and innate immune responses, playing roles as target-directed, purposeful mutators. AID specifically deaminates the host immunoglobulin (Ig) locus to evolve antibody specificity, whereas its close relative, APOBEC3G (A3G), lethally mutates the genomes of retroviral pathogens such as HIV. Understanding the basis for the target-specific action of these enzymes is essential, as mistargeting poses significant risks, potentially promoting oncogenesis (AID) or fostering drug resistance (A3G). AID prefers to deaminate cytosine in WRC (W = A/T, R = A/G) motifs, whereas A3G favors deamination of CCC motifs. This specificity is largely dictated by a single, divergent protein loop in the enzyme family that recognizes the DNA sequence. Through grafting of this substrate-recognition loop, we have created enzyme variants of A3G and AID with altered local targeting to directly evaluate the role of sequence specificity on immune function. We find that grafted loops placed in the A3G scaffold all produced efficient restriction of HIV but that foreign loops in the AID scaffold compromised hypermutation and class switch recombination. Local targeting, therefore, appears alterable for innate defense against retroviruses by A3G but important for adaptive antibody maturation catalyzed by AID. Notably, AID targeting within the Ig locus is proportionally correlated to its in vitro ability to target WRC sequences rather than non-WRC sequences. Although other mechanisms may also contribute, our results suggest that local sequence targeting by AID/APOBEC3 enzymes represents an elegant example of co-evolution of enzyme specificity with its target DNA sequence.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Citidina Desaminasa/metabolismo , Infecciones por VIH/enzimología , VIH-1/metabolismo , Desaminasa APOBEC-3G , Secuencias de Aminoácidos , Animales , Anticuerpos Antivirales/genética , Linfocitos B/metabolismo , Citidina Desaminasa/genética , Evolución Molecular , Células HEK293 , Infecciones por VIH/genética , VIH-1/genética , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Estructura Secundaria de Proteína
7.
J Biol Chem ; 283(46): 31289-93, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18818198

RESUMEN

The antiviral drug acyclovir is a guanosine nucleoside analog that potently inhibits herpes simplex virus (HSV) replication. Acyclovir treatment in patients coinfected with HSV and human immunodeficiency virus (HIV) has been observed to alter disease course and decrease HIV viral load, a finding that has been attributed to indirect effects of HSV suppression on HIV replication. Based on this hypothesis, several clinical studies have recently investigated the use of acyclovir for treatment of patients coinfected with HSV and HIV or for prophylaxis against HIV transmission. In this report, we use a single round HIV infectivity assay to show that acyclovir directly inhibits HIV infection with an IC50 of approximately 5 microm. The target of acyclovir in HIV-infected cells is validated as HIV reverse transcriptase (RT) by the emergence of the RT variant V75I under the selective pressure of acyclovir. The V75I mutation is part of the multidrug resistance pathway that enhances viral resistance to many of the best RT inhibitors approved for the treatment of HIV. Biochemical analyses demonstrate that acyclovir triphosphate is a chain terminator substrate for HIV RT and can compete with dGTP for incorporation into DNA. Although acyclovir may prove a useful lead for development of new HIV treatments, the selection of resistant mutants raises a cautionary note to the use of acyclovir monotherapy in patients coinfected with HSV and HIV.


Asunto(s)
Aciclovir/farmacología , Antivirales/farmacología , Farmacorresistencia Viral Múltiple/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , VIH/enzimología , Replicación Viral/efectos de los fármacos , VIH/genética , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Mutación/genética , Simplexvirus/efectos de los fármacos , Especificidad por Sustrato , Valina/genética , Valina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA